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Motivation and Background
ÅDeepwater oil and gas production 

such as Brazilian Pre-Salt(6 km 

below sea level)

Å High pressure, dense gases (CO2)

Å The density of liquid and gas of the 

same order of magnitude 

Å In the petroleum industry. The flow 

pressure drop, holdup and heat 

transfer are needed, to size the flow 

lines, separation facilities and flow 

assurance. Highly dependent on the 

flow pattern.
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Petrobras (2015)



Motivation and Background
ÅA fundamental difference between 

single-phase and two-phase flow is 

the existence of flow patterns

ÅFlow pattern transition boundaries 

are shown in flow pattern maps.
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Flow pattern map for 

horizontal air-water 

51 mm pipe

Shoham, O. (2006)

Barnea et. al. (1982)



Motivation and Background
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Å Good interpolation 

predictions

Å Find pattern in data

Å Prediction improves 

with data increase 

(automatically)

Å Poor extrapolation 

predictions

Å Black-box model

Å High demand of data

Å Good extrapolation 

predictions

ÅWhite-box model

Å Low demand of 

data

Å Demands closure 

relations for specific 

cases

Å Constant need to 

update model for new 

conditions

Physics-based

modeling

Data-driven machine 

learning
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ÅData-driven machine learning has high demand for experimental data and 
difficulty of generalization.

ÅPhysics-informed machine learningïIntegrate physics into machine learning 
to improve the performance of the models and reduce the data demand. Hybrid-
physics-data machine learning is used in this work.

ÅObjectives

Å Evaluate performance for dense-gas/liquid flow pattern transition using a 
phenomenological model and hybrid-physics-data machine learning

Å Effects on the data reduction available for training in the machine learning prediction.

Motivation and Background
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Experimental 

Dataset

Machine Learning

Å RandomForest
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Dataset (8829 experimental points)
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DvoraBarnea, 

Shoham, & Taitel

(1982)

Air and water 815 0.001
25

51
-90 to 0 0.0735 392 2400

Yamaguchi and 

Yamazaki (1984)
Air and Water 828 0.001 80 -90 0.073 74 57

Barnea et al. (1985) Air and Water 815 0.001
25

51
0 to 90 0.0735 392 1783

Usui (1989) Air and Water 828 0.001 24 -90 0.073 100 110

Kokal and Stanislav

(1989) 
Air and Oil 715 0.007

51

76
-9 to 9 0.031 328 1141

Crowley, Wallis and 

Barry (1992)

Air, Water and 

others
27.7 to 829

0.00035 to 

0.002
89 to 300 -2 to 4

0.02 to 

0.076
200 to 2000 757

Ohnukiand Akimoto 

(2000)
Air and Water 854 0.0008 200 90 0.0712 60 58

Abduvaytet al. (2003)
Nitrogen, 

Water
42 0.001 106 0 to 3 0.073 188 204

Kristiansen (2004) 
Air, SF6, 

Water and Oil
15 to 831

0.001  

0.002

60

69
-0.1 to 0.1

0.072

0.0217

267

3145
113

Lee, Ishii and Kim 

(2008)
Air and Water 122 0.001 51 -90 0.073 75 135
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Hanafizadehet al. 

(2011)
Air and Water 828 0.001

2

3

4

90 0.073

135

103

63

258

Almabrok (2013) Air and Water 75 0.001 102
-90

90
0.073 46 265

Khaledi et al. (2014) SF6, Oil 15.6to 33.3
0.032

0.096
69 0 0.062 754 287

Brito et al. (2014)
Air, Kerosene 

and Oil
72.8 to 81.1

0.0013 to 

0.996
51 0

0.028

0.034
827 237

Shmueli, Unanderand 

Nydal (2015)

SF6, Air and 

Oil

18.4

21.6

0.001

0.102
69 0

0.02

0.062
725 33

Ansari and Azadi

(2016)
Air and Water 1033 0.001

40

70
90 0.073

81

46
377

Al-Ruhaimaniet al. 

(2017)
Air and Oil 108

0.127

0.586
51 90 0.0357 423 83

Saljoshiand Autee

(2017)
Air and Water 304 0.001 1 to 3 0 0.073 120 to 591 318

Li et al. (2018) Air and Water 815 0.001 203
-90

0
0.0735

73

37
172

Present work SF6 and Oil 8 0.019 51 0 0.02 459 41

Dataset (8829 experimental points)
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Parameter Medium pressureloop Ambient pressureloop

Testsectionpressure 15bar(a) 1 bar(a)

Temperaturerange 15 °C to 50 °C 15 °C to 50 °C

Gasmax.volumetric flow 463ὔά ȾὬ 268ὔά ȾὬ
Oil max.volumetric flow 40ά ȾὬ 40ά ȾὬ
Watervolumetricflow - 40ά ȾὬ
Gas SF6 Air

Oil Lubrax turbina 22 Lubrax turbina 22

Water - Freshwater

Diameter 50.8mm and25.4mm 50.8 mm

L/D 459 and 918 459

Inclination -90° to 90° -90° to 90°

Experimental test for dense-gas/liquid
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Experimental results for dense-gas/liquid
Dispersed

Intermittent

Stratified

Annular

Dual-Continuous



Phenomenological Model
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Å Transition model based on: Taiteland Dukler (1976), Taitelet. al. (1980) 

and Barnea(1987)

Flow Pattern Transition 

Boundary 

Physical Transition 
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Transition Criteria 
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Machine Learning Method

Å Random forest: 

Å supervised learning 

Å Composed of 250 decision 

trees

Å Impurity measured with 

entropy criterion

Å The input features were 

normalized in the training of the 

methods

Å Implemented in Python 3.7 with 

Scikit learn library

Dataset

Input features:  

5 ȟ5 ȟʈȟʈȟʍȟʍȟʎȟ—ȟÄȟ&0

Output label: Flow pattern

DecisionTree#1 DecisionTree#2 DecisionTree#250

..

.

Voting

Flow patternprediction
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Results ïFlow pattern map

Å Dense-gas/liquid flow pattern, 

horizontal, 51 mm pipediameter

with densityratioof 8

Å The phenomenologicalmodel 

tendsto underpredictthe

stratifiedregion

Å Higherperformance for the

hybrid-physics-data machine

learning
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Results ïEffect of the data used for training

Considering the full database

Å Start with 75%/25% 

train/test split

Å Reducing until only 2% of 

the data was used for 

training 

Hybrid-physics-data is more 

robustness than the data-

driven machine learning



Conclusions
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ÅPhysics-informed machinelearning has improved performancefor the dense-

gas/liquidflow patternpredictioncomparedwith thephenomenologicalmodel

ÅFor a high quantity of data, the data-driven and physics-informed machine

learningperformedsimilarly

ÅThe reduction of available data for the training significantly impacted the

performanceof the data-driven machinelearning,whereasthe hybrid approach

hada performancesimilar to thatof thephenomenologicalmodel
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